位置:成果数据库 > 期刊 > 期刊详情页
免疫分类研究进展
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]佛山职业技术学院电子信息系,广东佛山528137, [2]北京建筑工程学院理学院,北京100044
  • 相关基金:国家自然科学基金项目(60874070);广东省教育厅项目(2010qk446).
中文摘要:

为了提高网络流量的预测精度,针对网络的时变性和混沌性,提出一种反向学习粒子群优化神经网络的网络流量预测模型(BPSO-RBFNN)。首先将网络流量样本输入到RBF神经网络进行学习,采用引入反向学习机制的粒子群算法优化参数,然后建立网络流量预测模型,最后采用仿真实验对模型性能进行分析。结果表明,BPSO-RBFNN可以描述网络流量的时变性、混沌性变化趋势,网络流量预测精度得以提高,具有较好的实际应用价值。

英文摘要:

In order to improve the prediction accuracy of network traffic,in this paper we propose a network traffic prediction model(BPSO-RBFNN),which is based on neural network optimised by the opposition-based learning particle swarm optimisation.First,we inputthe network traffic sample to RBF neural network for learning,and introduce particle swarm optimisation of opposition-based learningmechanism to optimise the parameters,then we build network traffic prediction model,and finally use simulation experiment to analysemodel’s performance.Results show that the BPSO-RBFNN can describe the variation trend of time-varying property and chaotic property ofthe network traffic,and the prediction accuracy of network traffic can be improved,it has higher practical application value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887