位置:成果数据库 > 期刊 > 期刊详情页
ρ-混合序列的重对数律
  • ISSN号:0583-1431
  • 期刊名称:《数学学报》
  • 时间:0
  • 分类:O211.4[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]浙江工商大学数学系,杭州310035
  • 相关基金:国家自然科学基金资助项目(10471126);致谢 衷心感谢审稿专家提出的宝贵的修改意见!
作者: 蔡光辉[1]
中文摘要:

设{Xn,n≥1},是同分布ρ-混合序列,其分布属于特征指数为α(0〈α〈2)的非退化稳定分布的正则吸引场,证明了依概率1有lim supn→∞(|∑i^n=1Xi|/n1/α)1/loglogn=e^1/α,并获得了一系列等价条件.此结果的获得不仅将已有的一些结果推广至ρ-混合序列的情形,并且将其结果作了一定的改进.

英文摘要:

Let {Xi,i ≥1} be p-mixing sequences with identical distributions, and these distributions belong to domain of normal attraction with non-degeneratc stable n X 1 distribution. With probability one, we have lim supn→∞(|∑i^n=1Xi|/n1/α)1/loglogn=e^1/α And we get several equivaent conditions, which not only generalize the obtained results equivalent to ρ- mixing sequences, but also improve them.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院数学研究院
  • 主编:李炳仁
  • 地址:北京市海淀区中关村东路55号
  • 邮编:100080
  • 邮箱:Actamath@amss.ac.cn
  • 电话:010-62551910
  • 国际标准刊号:ISSN:0583-1431
  • 国内统一刊号:ISSN:11-2038/O1
  • 邮发代号:2-502
  • 获奖情况:
  • 1996年中科院优秀科技期刊二等奖,1997年全国优秀科技期刊二等奖,2000年中科院优秀科技期刊二等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9981