位置:成果数据库 > 期刊 > 期刊详情页
基于离散量子微粒群优化的作业车间调度
  • ISSN号:1008-973X
  • 期刊名称:浙江大学学报(工学版)
  • 时间:0
  • 页码:842-847
  • 分类:TP278[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]浙江大学智能系统与控制研究所、工业控制技术国家重点实验室,浙江杭州310027
  • 相关基金:国家自然科学基金资助项目(60974100,60904039);中央高校基本科研业务费专项资金资助项目.
  • 相关项目:基于计算智能的流程工业生产调度与控制协同优化理论研究
中文摘要:

针对强非确定性多项式难的作业车间调度(JSP)问题,提出一种离散量子微粒群优化算法(DQPSO).该算法基于量子态波函数描述微粒群粒子位置,结合遗传算法中的交叉、变异操作,采用随机键编码方法对连续空间内的解进行离散化,使得DQPSO能够直接用于求解车间生产调度这类组合优化问题.另外,针对JSP的复杂性,通过引入2层结构的局部搜索策略,构造在局部优化解附近不同搜索半径的微粒,增强算法的搜索能力,进一步提高解的多样性和寻优质量.应用结果表明,对大部分作业车间调度测试算例,DQPSO表现出更有效的寻优性能.

英文摘要:

A novel discrete quantum-behaved particle swarm optimization (DQPSO) approach was proposed to address Job-shop scheduling (JSP) problem. JSP is a complex combinatorial optimization problem with many variations, and it is strong nondeterministic polynomial time (NP)-complete. The proposed DQPSO approach utilized the principle of quantum-PSO and described the particle positions with quantum wave function. Crossover and mutation operators in GA were involved which makes DQPSO applicable for searching in combinatorial space directly. In addition, a new two-layer local searching algorithm was also incorporated into the DQPSO algorithm. The two layer local searching algorithm randomly generated new particles around the local optimums, which in turn updated solutions with high quality and diversity. The application demonstrated that DQPSO can achieve better results on most benchmark scheduling problems.

同期刊论文项目
期刊论文 22 会议论文 7 专利 1 著作 1
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198