利用埃尔米特自反矩阵的表示定理,得到了线性流形上埃尔米特自反矩阵反问题的最小二乘解的一般表达式。并建立了矩阵方程在线性流形上可解的充分必要条件。最后,对于任意给定的*阶复矩阵,推导了其相关最佳逼近问题解的表达式。
By using the denotative theorem of Hermitian-Reflexive Matrices,this paper obtains the general expression of the least-squares solutions of inverse problem for Hermitian-Reflexive Matrices on the linear manifold,establishing some necessary and sufficient conditions for the linear matrix equations with a solution on the linear manifold,and for any n-by-n complex matrix,deriving the expression of the solution for relevant optimal approximate problem.