位置:成果数据库 > 期刊 > 期刊详情页
Variational reconstruction using subdivision surfaces with continuous sharpness control
  • ISSN号:1001-7445
  • 期刊名称:《广西大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.7[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:Beijing Key Lab of Big Data Technology for Food Safety,School of Computer and Information Engineering,Beijing Technology and Business University, College of Engineering, Nanyang Technological University
  • 相关基金:supported by the National Natural Science Foundation of China (No. 61602015);an MOE AcRF Tier 1 Grant of Singapore (RG26/15);Beijing Natural Science Foundation (No. 4162019);open funding project of State Key Lab of Virtual Reality Technology and Systems at Beihang University (No. BUAAVR-16KF-06);the Research Foundation for Young Scholars of Beijing Technology and Business University
中文摘要:

We present a variational method for subdivision surface reconstruction from a noisy dense mesh. A new set of subdivision rules with continuous sharpness control is introduced into Loop subdivision for better modeling subdivision surface features such as semi-sharp creases, creases, and corners. The key idea is to assign a sharpness value to each edge of the control mesh to continuously control the surface features.Based on the new subdivision rules, a variational model with L1 norm is formulated to find the control mesh and the corresponding sharpness values of the subdivision surface that best fits the input mesh. An iterative solver based on the augmented Lagrangian method and particle swarm optimization is used to solve the resulting non-linear, non-differentiable optimization problem. Our experimental results show that our method can handle meshes well with sharp/semi-sharp features and noise.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《广西大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:广西大学
  • 主办单位:广西大学
  • 主编:陈保善
  • 地址:广西南宁市大学路100号广西大学西校区
  • 邮编:530005
  • 邮箱:gxuzrb@gxu.edu.cn
  • 电话:0771-3235713 3232390
  • 国际标准刊号:ISSN:1001-7445
  • 国内统一刊号:ISSN:45-1071/N
  • 邮发代号:
  • 获奖情况:
  • 全国高校自然科学优秀学报,广西优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9092