位置:成果数据库 > 期刊 > 期刊详情页
车辆图像稀疏特征表示及其监控视频应用
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京大学电子科学与工程学院,南京210046, [2]江苏理工学院计算机工程学院,江苏常州213001
  • 相关基金:国家自然科学基金项目(61472166,61105015); 江苏省科技厅项目(BE2011747); 常州市应用基础研究基金项目(CJ20120021)
中文摘要:

针对传统车辆图像特征在复杂场景下响鲁棒性和泛化能力低的问题,提出了车辆图像稀疏特征表示方法,并实现了基于稀疏特征的车辆图像支持向量机线性分类器,构建了基于稀疏特征和背景建模的监控车辆分类识别应用框架.与传统方法相比,该方法将车辆图像表示成字典集的低维稀疏线性组合,提高了特征表示泛化能力,能适应实时性监控视频分析的需求.实验结果表明,基于稀疏特征的车辆识别准确率比传统方法明显提升,并在低分辨率、阴影、遮挡等复杂场景下有较好的鲁棒性.

英文摘要:

Typical vehicle image feature will lost robustness and generalization ability under complex scene. To deal with this problem,sparse based vehicle images feature representation was introduced and a linear vehicles support vector machine classifier based on the sparse representation was proposed.Then,a framework of vehicle classification and recognition on surveillance video was constructed based on the background subtraction and sparse represented feature. Compared with traditional methods,vehicle images are represented as linear combination of the sparse coefficient of a learned dictionary( atom or base) in low dimension in our method,and sparse represented feature gains higher generalization capability with less computational complexity. Experiment shows that this work exhibits better classification accuracy and robustness under complex real environment with decrease image quality of low resolution,shadow and occlusion.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684