在这份报纸,我们学习下列非线性的 BSDE:y (t) +1t f ( s , y , z ) ds+1t [ z +g1 ( s , y ) +g2 ( s , y , z )] dWs =, t [ 0,1 ],吗小 parameter.The 系数 f 在哪儿,是局部地在 y 和 z 的 Lipschitz ,系数 g1 是局部地在 y 的 Lipschitz ,和系数 g2 是一致地在 y 的 Lipschitz 和 z.Let 行是局部地球 B 上的系数的 Lipschitz 常数( O ,吗 N ) Ra 栠浡汩潴楮湡??????????€ ???€ ??瘠?????????栠浡汩潴楮湡?????匠???????牯敤?湉?????????????????栠浡汩潴楮湡??
In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.