设G是有限群,利用G的Sylowp-子群P的极大子群在NG(P)中的弱M-可补性,结合H(P)={H≤P|P′≤H≤Φ(P)}中元素的几乎m-嵌入性,研究G的p-幂零性、p-超可解性及超中心的结构.
Let G be a finite group. Some results about p-nilpotent groups, p-supersolvable groupsand the hypercentre of finite groups are obtained by using the weakly M-supplemented properties of the maximal subgroups of P in NG (P) and the nearly m-embedded properties of the element of H(P)={H≤P|P′≤H≤Φ(P)}, where P is a Sylow p-subgroup of G.