用Nevanlinna理论,研究差分方程a_1(z)f(qz+p)+a_0(z)f(z)=F(z)一个有穷级超越亚纯解f(z)及任一亚纯函数g(z)分担0,1,∞IM时的唯一性问题(其中p,q为常数,满足n∈N~+,q~n≠±1,q≠0,a_1(z),a_0(z),F(z)为非零亚纯函数且级均小于1),得到了f(z)=g(z).
By using Nevanlinna theory,we studied the uniqueness problem for difference equation a_1(z)f(qz+p)+a_0(z)f(z)=F(z)when a inite-order transcendental meromorphic solution f(z)and any meromorphic function g(z)were sharing 0,1,∞ IM(where q,p were constants,n∈ N~+,q~n≠±1,q≠0,a_1(z),a_0(z),F(z)were nonzero meromorphic functions and the order was less than1),we got the result f(z)=g(z).