位置:成果数据库 > 期刊 > 期刊详情页
一种基于结构化学习的排序算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]安徽大学计算机科学与技术学院,合肥230039, [2]中国科学技术大学计算机科学与技术学院,合肥230027
  • 相关基金:教育部人文社科青年基金(No.10YJC630398);安徽省自然科学基金资助项目(No.11040606M141);安徽大学“211工程”资助项目.
中文摘要:

传统排序算法将排序问题转换成分类或回归问题来求解,这样得到的模型不够精确。对此提出一种新的排序算法,该算法把排序问题看成一个结构化学习过程,即通过训练集来学习一个排序结构。算法首先定义了一个查询级的目标函数,针对算法约束条件太多,难以直接优化,提出使用割平面算法进行求解。对于算法中的“寻找最违约排列”子问题,将其变换成为一个简单的降序排列问题。基于基准数据集的实验表明,相比起传统的排序算法,所提算法更为有效。

英文摘要:

For the problem that the model learned from traditional ranking algorithm which converts ranking problem to classification or regression is not accurate, a novel ranking algorithm is proposed.It views the ranking problem as a procedure of structured learning which learns a rank structure from the train set.The algorithm defines a object function of query level, and presents using the cutting plane algorithm to solve the problem that the algorithm has exponential number of constraints. For the sub-problem of finding the most violated constraints,the paper transforms it into a simple sorting in descending order.Experimental results on the benchmark datasets show that the algorithm proposed in this paper is more effective than the traditional ranking algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887