位置:成果数据库 > 期刊 > 期刊详情页
基于共生系统的人工鱼群算法在饲料配方优化中的应用
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] S963.71[农业科学—水产养殖;农业科学—水产科学]
  • 作者机构:[1]西安理工大学自动化与信息工程学院,西安710048, [2]陕西省复杂系统控制与智能信息处理重点实验室,西安710048, [3]西安理工大学计算机科学与工程学院,西安710048, [4]陕西省畜牧技术推广总站,西安710016, [5]福井大学工学研究科,日本福井910-8507
  • 相关基金:国家自然科学基金资助项目(61502385).
中文摘要:

考虑到智能算法对各类饲料配方优化模型的广泛适用性,首次将人工鱼群算法(AFSA)应用于饲料配方优化。为满足饲料配方优化对收敛精度的要求,采用了一种基于共生系统的人工鱼群算法运行框架,显著提高了原算法的收敛精度与速度。在优化过程中,人工鱼在解空间的位置直接以饲料配比进行编码,采取基于罚函数的评价函数计算其适应度;人工鱼以预定的行为策略执行各行为算子对解空间进行搜索。最后三个实际算例验证了所提算法的有效性。验证结果表明,所提算法设计出的饲料配比方案的吨成本显著降低,各项营养达标,提出算法的优化性能明显优于其他已有算法。

英文摘要:

In consideration of intelligence algorithms' extensive applicability to various types of feed formulation optimization models, the Artificial Fish Swarm Algorithm (AFSA) was firstly applied in feed formulation optimization. For meeting the required precision of feed formulation optimization, a symbiotic system-based AFSA was employed, which significantly improved the convergence accuracy and speed compared with the original AFSA. In the process of optimization, the positions of Artificial Fish (AF) individuals in solution space were directly coded as the form of solution vector to the problem via the feed ratio, a penalty-based objective function was employed to evaluate AF individuals' fitness. AF individuals performed several behavior operators to explore the solution space according to a predefined behavioral strategy. The validity of the proposed algorithm was verified on three practical instances. The verification results show that, the proposed algorithm has worked out the optimal feed formulation, which can not only remarkably reduce the fodder cost, but also satisfy various nutrition constraints. The optimal performance of the proposed algorithm is superior to the other existing algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679