该文利用基于并行核外高阶矩量法的区域分解法(DDM)快速准确地分析了机载雷达相控阵的受扰特性。分析机载相控阵主波束相位扫描变化时,可将其分为机载平台和相控阵两个区域。由于机载平台不变,故在求解过程中只需计算一次,并利用核外技术将该部分的阻抗矩阵等相关数据信息存入硬盘。每改变一次扫描角,只需重新计算相控阵区域,进而结合已存储的机载平台区域,通过迭代便能得到机载相控阵的受扰特性。该方法能够大幅度降低大型机载问题的计算时间和存储需求。数值仿真实例表明,该方法可用于高效分析大型机载平台中的雷达相控阵天线布局问题。
A parallel higher-order and out-of-core based Domain Decomposition Method(DDM) is proposed for analyzing the disturbed characteristics of large airborne phased radar antenna array. When the phase of main beam sweeps for the airborne phased radar antenna array, the problem is divided into two parts: radar antenna array and airborne platform. The platform which remains unchanged during the overall solution is simulated only once at the beginning, and then the relative data, such as impedance matrixes are written into hard disk using out-of-core technique. When the phase sweeps, only the phased antenna array part is concerned. Finally, the accurate results are obtained by iterative solution. This method largely reduces the CPU time and storage requirements. The numerical example demonstrates that the proposed method is very suitable for analyzing the layout of large airborne phased radar antenna array.