位置:成果数据库 > 期刊 > 期刊详情页
Finding Nuggets in Patent Portfolios: Core Patent Mining and Its Applications
  • 时间:0
  • 分类:TP392[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]the Department of Computer Science and Technology,Tsinghua University Beijing 100084, China.
  • 相关基金:the National Natural Science Foundation of China (No. 61272227); the National Key Technology Research and Development Program(No. 20121857860); the Tsinghua University Initiative Scientific Research Program (No. 20121088071)We thank the three anonymous reviewers for their valuable comments.
中文摘要:

Patents are critically important for a company to protect its core business concepts and proprietary technologies. Effective patent mining in massive patent databases not only provides business enterprises with valuable insights to develop strategies for research and development, intellectual property management, and product marketing, but also helps patent offices to improve efficiency and optimize their patent examination processes. This paper describes the patent mining problem of automatically discovering core patents (i.e., novel and influential patents in a domain). In addition, the value of core patent mining is illustrated by revealing the potential competitive relationships among companies in their core patents. The work addresses the unique patent vocabulary usage which is not considered in traditional word-based statistical methods with a topic-based temporal mining approach that quantifies a patent’s novelty and influence through topic activeness variations. Tests of this method on real-world patent portfolios show the effectiveness of this approach over state-of-the-art methods.

英文摘要:

Patents are critically important for a company to protect its core business concepts and proprietary technologies. Effective patent mining in massive patent databases not only provides business enterprises with valuable insights to develop strategies for research and development, intellectual property management, and product marketing, but also helps patent offices to improve efficiency and optimize their patent examination processes. This paper describes the patent mining problem of automatically discovering core patents (i.e., novel and influential patents in a domain). In addition, the value of core patent mining is illustrated by revealing the potential competitive relationships among companies in their core patents. The work addresses the unique patent vocabulary usage which is not considered in traditional word-based statistical methods with a topic-based temporal mining approach that quantifies a patent's novelty and influence through topic activeness variations. Tests of this method on real-world patent portfolios show the effectiveness of this approach over state-of-the-art methods.

同期刊论文项目
同项目期刊论文