通过多维关联规则挖掘,将粒度计算(Granular Computing,GrC)和支持向量机(Support Vector Machine,SVM)有效融合,提出一种粒度支持向量机(Granular SVM,GSVM)学习方法,称为AR-GSVM。该方法用于非平衡数据处理时,不仅可以有效降低分类器的复杂性,而且本质上可以进行并行计算以提高学习效率,同时提高分类器的泛化能力。考虑到保持数据在原始空间和特征空间的分布一致性,在AR-GSVM的基础上又提出核空间上的粒度支持向量机学习方法,称为AR-KGSVM,该方法具有更好的泛化性能。通过在UCI数据集上的实验表明:AR-GSVM和AR-KGSVM的泛化能力优于一些常用非平衡数据处理的方法。
Through the mining of multi-dimension association rules,Granular Computing(GrC) and Support Vector Machine(SVM) are efficiently amalgamated,and a Granular Support Vector Machine(GSVM) learning approach is proposed,namely AR-GSVM.For imbalanced datasets,AR-GSVM can not only reduce the complexity of the classifier,but also improve learn-ing efficiency and generalization performance.Considering the data distribution consistence in the input space and kennel space,another granular SVM model on kennel space based on AR-GSVM is proposed,which is named as AR-KGSVM.AR-KGSVM can obtain better generalization performance comparing with AR-GSVM.The experimental results on UCI datas-ets demonstrate that the generalization performances of AR-GSVM and AR-KGSVM are superior to some most common used methods in dealing with imbalanced datasets.