位置:成果数据库 > 期刊 > 期刊详情页
自适应多特征融合目标跟踪
  • ISSN号:1003-501X
  • 期刊名称:《光电工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
  • 相关基金:国家自然科学基金项目(61104213,61573168)资助;江苏省产学研前瞻性联合研究项目(BY2015019-15)资助.
作者: 刘行, 陈莹
中文摘要:

为了准确地提取出图像中的显著区域,根据人类视觉注意机制的基本原理,提出一种基于背景和中心先验的图像显著性检测方法.首先选择了SLIC(Simple Linear Iterative Clustering)超像素分割算法对输入图像进行预处理,使得检测结果能够最大程度上保持图像中物体的形状;然后根据背景先验理论,大致区分图像的背号和显著目标;最后,针对传统的中心效应对偏离图像中心的显著目标检测失效的问题,将背景先验显著图的质心作为显著目标的中心位置建立中心显著图,进一步抑制背景,突出显著目标.仿真实验结果表明,针对自然场景的图像,该方法能够均匀地突出显著对象,有效地抑制背景.

英文摘要:

In order to detect salient region accurately in the image, an image saliency detection based on background and center prior in natural scenes is proposed according to the basic principle of human visual attention mechanism,. The original image is first seg- mented into superpixels using SLIC (Simple Linear Iterative Clustering ) segmentation algorithm so that the detection result can keep the shape of the objects in the image. Then according to the theory of background prior, the background and salient object is roughly separated. Finally, the final saliency map which further highlight salient object is generated by regarding the centroid of the back- ground prior saliency map as the center of salient object ~ which overcomes the problem that the traditional center prior falls to detect the target which deviated from the center of the image. Simulation Experiments demonstrate that this method can highlight saliency object uniformly and suppress the background in natural scenes effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光电工程》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院光电技术研究所 中国光学学会
  • 主编:罗先刚
  • 地址:四川省成都市双流350信箱
  • 邮编:610209
  • 邮箱:oee@ioe.ac.cn
  • 电话:028-85100579
  • 国际标准刊号:ISSN:1003-501X
  • 国内统一刊号:ISSN:51-1346/O4
  • 邮发代号:62-296
  • 获奖情况:
  • 四川省第二次期刊质量考评自然科学期刊学术类质量...,四川省第二届优秀期刊评选科技类期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14003