研究了干摩擦和油润滑滑动条件下纳米结构cu的摩擦磨损性能与磨痕亚表层结构特征.比较了不同条件下纳米结构Cu耐磨性的差异,并对亚表层结构进行深入研究.结果表明,2种条件下纳米结构Cu均表现出以动态再结晶为主导的摩擦磨损机制,其耐磨性与磨痕亚表层再结晶晶粒尺寸之间的关系为磨损率随着动态再结晶晶粒尺寸增大而增加.
Grain refinement induced increase in hardness is of interest from a tribological point of view. Most of nanostructured metals show an enhanced wear resistance in comparison with their coarse-grained counterparts. To understand the related wear mechanism, the tribological properties and worn subsurface structure of nanostruc- tured Cu were investigated under both dry and oil-lubricated sliding conditions, respectively. The wear resistance and worn subsurface structure of nanostructured Cu were compared under different conditions. The results indicate that nanostructured Cu exhibits a dynamic recrystallization tions. A pronounced correlation is identified that wear rate decreasing hardness of DRX structure. (DRX) dominated wear mechanism under both condi- increases significantly with an increasing grain size or