位置:成果数据库 > 期刊 > 期刊详情页
基于Kalman和双级联随机森林的在线目标跟踪算法
  • ISSN号:1002-8692
  • 期刊名称:《电视技术》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:空军航空大学航空航天情报系,吉林长春130000
  • 相关基金:国家自然科学基金项目(61301233)
中文摘要:

针对传统的基于检测的在线目标跟踪算法容易产生跟踪漂移的现象,提出了一种新的在线目标跟踪算法。以基于主方向模板特征的双级联随机森林分类器作为检测器,卡尔曼滤波器作为跟踪器。首先利用卡拉曼算法跟踪目标,然后以跟踪的目标位置为中心向外扩展一定的范围作为双级联随机森林分类器的检测区域,利用全局随机森林分类器和局部随机森林分类器进行目标检测,并将检测结果作为Kalman跟踪算法下一帧的观测值。实验结果显示,提出的算法在跟踪大小420×320的图像时,跟踪速度达到24.3f/s(帧/秒),目标中心位置误差在30pixel时,算法准确率可达到80%以上。

英文摘要:

As the traditional online tracking algorithm based on detection is easy to cause the tracking drift, a new online target tracking algorithm is proposed in this paper, where the Cascaded Random Forest with Dominant Orientation Templates is used as a detector, while the Kalman filter is the tracker. First, the Kalman filter is used to track the target, then the holistic detector and patch-based detector is applied to detect the object with the track result as the area center, and the detecting result is used as next frame' s observed value of Kalman tracking algorithm. The experimental results show that in the video sequence of 320 pixel × 240 pixel, the speed can keep in 24.3 frame/s, and the object center position error is in 30 pixel, while the accuracy can reach above 80%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电视技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:电视电声研究所
  • 主编:许盈(执行主编)
  • 地址:北京市朝阳区酒仙桥北路乙7号
  • 邮编:100015
  • 邮箱:tvea@263.net.cn; dsss@chinajournal.net.cn
  • 电话:010-59570246
  • 国际标准刊号:ISSN:1002-8692
  • 国内统一刊号:ISSN:11-2123/TN
  • 邮发代号:2-354
  • 获奖情况:
  • 第三届国家期刊奖百种重点期刊、中国期刊方阵双百...
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12712