合金的片层组织。由于合金定向凝固过程中发生完全包晶转变,在枝晶固液生长界面条件下,即可获得片层方向与生长方向成0°或45°夹角的多孪晶合成晶体(PST)。在适当的生长条件下,当片层方向与生长方向平行的片层团在二次定向凝固过程中发生籽晶作用时,可以控制PST晶体内部的片层方向仅与生长方向平行。合金中低含量B的加入会导致非包晶α相的生长,从而不利于控制片层方向。定向凝固TiAl-Nb合金中存在较大的氧化钇颗粒与条状硼化物颗粒,导致其室温拉伸延伸率仅接近2%。
The double directional solidification(DS) technique was developed to control the lamellar microstructures in primary β TiAl-Nb alloys.Polysynthetically twinned(PST) crystals with lamellar boundaries parallel to or inclined 45o to the growth direction were achieved due to the complete peritectic transformation during directional solidification of the alloys with the dendritic solid/liquid interface.The PST crystals with aligned lamellar boundaries only parallel to the growth direction were produced when lamellar grains with lamellar boundaries in the same orientation were seeded by themselves under appropriate growth conditions.Low boron addition is harmful to align the lamellar orientation because of the growth of non-peritectic α phase.Due to the larger yttria particles and boride ribbons in the directionally solidified TiAl-Nb alloys,the tensile plastic elongations of the alloys are only close to 2%.