位置:成果数据库 > 期刊 > 期刊详情页
基于子空间增量学习的视频中人脸图像检索
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院计算技术研究所前瞻研究中心,北京100080, [2]中国科学院研究生院,北京100049, [3]中国科学院计算技术研究所上海分部,上海201203
  • 相关基金:国家自然科学基金(60473043);北京市科技新星计划项目(2005B54).
中文摘要:

提出一种以电影视频中人脸图像为依据的视频检索方法.首先通过AdaBoost检测视频序列中的人脸图像,将检测到的人脸做标准化处理后投影到增量特征人脸子空间中,得到人脸图像的向量表述;然后应用单类支持向量机进行训练和分类,根据分类的结果动态地调整前面得到的最优分类超平面,实现对电影视频中特定演员的检索功能.由于不同镜头中同一人的人脸图像通常差别很大,该方法随时间序列动态地调整特征人脸空间,以适应人脸分布的变化.对电影《小花》、《Notting hill》等的实验表明,该方法在视频环境下可以较准确地检索出特定人像.

英文摘要:

This paper presents a novel method for face retrieval in feature-length films. At first, the AdaBoost is used to detect human faces in the video, then the detected faces are normalized and projected to the incremental eigenspace to obtain their vector representation. After that, the one-class support vector machine is trained for classification and the optimal classification plane is dynamically adjusted to account for different actors in the film. Experiments on a famous Chinese film "little flower" and an Oscar prize film "Notting hill" show the effectiveness of our proposed method.

同期刊论文项目
期刊论文 7 会议论文 12 获奖 4
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752