利用三种方法可视化化了Ru(II)ammine的金属到配体的电荷转移.首先原子分辨的态密度显示HoM0上的密度主要在Ru上,LUMo上的态密度在ammine上,这说明Ru上激发的电子会转移到ammine配体上.第二,电荷差异密度揭示了所有的窄穴都在Ru上,所有的电子都在ammine上.第三,跃迁密度矩阵揭示了Ru和Hammine上的电子空穴对的相关性.这三种方法也用来研究Os(bpy)2(pop)Cl的金属到配体的电荷转移和Alq3配体到配体的电荷转移.
Three methods including the atomic resolved density of state, charge difference density, and the transition density matrix are used to visualize metal to ligand charge transfer (MLCT) in ruthenium(II) ammine complex. The atomic resolved density of state shows that there is density of Ru on the HOMOs. All the density is localized on the ammine, which reveals that the excited electrons in the Ru complex are delocalized over the ammine ligand. The charge difference density shows that all the holes are localized on the Ru and the electrons on the ammine. The localization explains the MLCT on excitation. The transition density matrix shows that there is electron-hole coherence between Ru and ammine. These methods are also used to examine the MLCT in Os(bpy)2(p0p)Cl ("Osp0p": bpy=2,2-bipyrldyl; p0p=4,4'- bipyridyl) and the ligand-to-ligand charge transfer (LLCT) in Alq3. The calculated results show that these methods are powerful to examine MLCT and LLCT in the metal-ligand system.