位置:成果数据库 > 期刊 > 期刊详情页
利用高光谱数据进行地物识别分类研究
  • ISSN号:1004-4213
  • 期刊名称:《光子学报》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国科学院西安光学精密机械研究所,西安710119, [2]中国科学院研究生院,北京100039
  • 相关基金:国家自然科学基金(40301031)资助
中文摘要:

分析了传统统计分类方法在高光谱影像地物分类中的弊端,提出并详细讨论了基于端元的监督分类技术.利用端元监督分类技术对LASIS高光谱影像进行分类,同时应用IsoData非监督分类技术即自动迭代聚类对高光谱影像进行分类.分析比较了两种分类结果,表明基于端元的监督分类技术更能满足对地物识别分类的需要.

英文摘要:

The limitation in hyperspectral land cover classification is discussed, when using traditional statistical classification methods. An endmember-based supervised classification approach is proposed and discussed. The experimental data was acquired by imaging spectrometer (LASIS). The endmember-based supervised classification procedure was used for the hyperspectral image. The IsoData unsupervised classification procedure that automatically iteratively clusters the pixels was also used. The results of supervised and unsupervised classification are compared. It shows that the endmember-based supervised classification for land cover is much more satisfied.

同期刊论文项目
期刊论文 12 会议论文 2
同项目期刊论文
期刊信息
  • 《光子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国光学学会 西安光机所
  • 主编:侯洵
  • 地址:西安市高新区新型工业园信息大道17号47分箱
  • 邮编:710119
  • 邮箱:photo@opt.cn
  • 电话:029-88887564
  • 国际标准刊号:ISSN:1004-4213
  • 国内统一刊号:ISSN:61-1235/O4
  • 邮发代号:52-105
  • 获奖情况:
  • 中文核心期刊,曾获中国光学学会先进期刊奖,中国科学院优秀期刊三等奖,陕西省国防期刊一等奖等
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:20700