位置:成果数据库 > 期刊 > 期刊详情页
The limit theorem for dependent random variables with applications to autoregression models
  • ISSN号:1009-6124
  • 期刊名称:Journal of Systems Science and Complexity
  • 时间:2011.6.6
  • 页码:565-579
  • 分类:O211.5[理学—概率论与数理统计;理学—数学] O212.1[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]College of Mathematics, Jilin University (Qianwei Campus), Changchun 130012, China
  • 相关基金:This research is supported by the National Natural Science Foundation of China under Grant Nos. 10971081 and 11001104, and 985 Project of Jilin University.Acknowledge We would like to thank the referee and the editor for their careful reading, helpful comments and suggestions and some corrections which improved the manuscript. We Mso thank Prof. Tiefeng Jiang very much for the improvement of the language.
  • 相关项目:关于随机图论中极限理论的研究
中文摘要:

这份报纸学习顺序一的 autoregression 模型,在允许的一个一般时间系列背景弱依赖的革新。让 { X t } 一个线性过程被 X t = k=0 k 定义吗?t ? k { k, k 0 } 实数的一个序列是并且 { ?k,k=0, ??

英文摘要:

This paper studies the autoregression models of order one, in a general time series setting that allows for weakly dependent innovations. Let {Xt} be a linear process defined by Xt =∑k=0^∞ψ kεt-k, where {ψk, k ≥ 0} is a sequence of real numbers and {εk, k = 0, ±1, ±2,...} is a sequence of random variables. Two results are proved in this paper. In the first result, assuming that {εk, k ≥ 1} is a sequence of asymptotically linear negative quadrant dependent (ALNQD) random variables, the authors find the limiting distributions of the least squares estimator and the associated regression t statistic. It is interesting that the limiting distributions are similar to the one found in earlier work under the assumption of i.i.d, innovations. In the second result the authors prove that the least squares estimator is not a strong consistency estimator of the autoregressive parameter a when {εk, k ≥ 1} is a sequence of negatively associated (NA) random variables, and ψ0 = 1, ψk = 0, k ≥ 1.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统科学与复杂性学报:英文版》
  • 主管单位:中国科学院
  • 主办单位:中国科学院系统科学研究所
  • 主编:
  • 地址:北京东黄城根北街16号
  • 邮编:100080
  • 邮箱:
  • 电话:010-62541831 62541834
  • 国际标准刊号:ISSN:1009-6124
  • 国内统一刊号:ISSN:11-4543/O1
  • 邮发代号:82-545
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:125