位置:成果数据库 > 期刊 > 期刊详情页
核正交UDP及其在人脸识别中的应用
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工程大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:国家“八六三”高技术研究发展计划(2009AA04Z215); 国家自然科学基金(60803036)
中文摘要:

针对人脸识别中的特征提取问题,对原始的非监督判别映射(UDP)算法进行了改进,提出一种基于核正交UDP的人脸识别算法.利用核的方法提取人脸图像中的非线性信息,并将其投影在一个高维非线性空间;在加入基向量正交的约束后,通过能够保持人脸图像局部几何结构的UDP算法作一个线性映射,以求取算法的正交基向量.该算法中,采用核方法可以更好地提取人脸非线性结构特征,正交基向量则可以更好地保留非线性子流形空间与度量结构有关的信息,增强了算法的识别性能.最后,通过在ORL和PIE人脸库上的人脸识别实验验证了文中算法的有效性.

英文摘要:

In view of the problems of feature extraction in face recognition,an improved version of unsupervised discriminant projection(UDP) named kernel orthogonal unsupervised discriminant projection is proposed in this paper.First the nonlinear information in face images is extracted by the kernel trick and mapped into a high dimensional nonlinear space.Then a linear transformation which produces orthogonal basis vectors is performed to preserve locality of the geometric structure of the face images.The kernel trick helps obtain nonlinear structure features and the orthogonal basis vectors help preserve the information of nonlinear sub-manifold space related to the metric structure.Experiments on ORL and PIE face database demonstrate the effectiveness of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752