在获得光致原子解吸附(light-induced atom desorption,LIAD)效应的基础上,从理论和实验方面分析了LIAD对铯原子磁光阱装载的动力学过程的影响,特别是背景原子对磁光阱的影响.通过实验获得了不同光强和照射时间下关闭解吸附光后磁光阱中铯原子的衰减过程,理论模型定量地描述了背景铯原子造成压强的变化及其对最终平衡态下真空度的影响.该研究对中性原子的长时间俘获,有效控制磁光阱中原子的装载过程具有重要意义.
The dynamics of magneto-optical trap loading by light-induced atom desorption (LIAD) are investigated theoretically and experimentally. The loading of the MOT has been described by a theoretical model. We have paid close attention to the background gases which are essentially important for the ultimate vacuum pressure. The experiment is done based on a glass cell and all the results are well in agreement with the theory. The decay process of the background vacuum pressure caused by the untrapped cesium atoms after shutting off the desorption light is explained quantitatively. The LIAD effect is proved to be an effective tool to control the loading of the MOT and the neutral single atoms in experiment.