位置:成果数据库 > 期刊 > 期刊详情页
Investigating microstructure of Longmaxi shale in Shizhu area,Sichuan Basin, by optical microscopy, scanning electron microscopy and micro-computed tomography
  • ISSN号:0001-5733
  • 期刊名称:《地球物理学报》
  • 时间:0
  • 分类:P631[天文地球—地质矿产勘探;天文地球—地质学]
  • 作者机构:[1]中国科学院地质与地球物理所中国科学院油气资源研究重点实验室,北京100029, [2]中国科学院大学,北京100049
  • 相关基金:国家自然科学基金项目(41325016和11271349)资助 致谢 感谢审稿专家提出的宝贵修改意见和编辑部的大力支持!
中文摘要:

有限差分方法是波场数值模拟的一个重要方法,交错网格差分格式比规则网格差分格式稳定性更好,但方法本身都存在因网格化而形成的数值频散效应,这会降低波场模拟的精度与分辨率.为了缓解有限差分算子的数值频散效应,精确求解空间偏导数,本文把求解波动方程的线性化方法推广到用于求解弹性波方程交错网格有限差分系数;同时应用最大最小准则作为模拟退火(SA)优化算法求解差分系数的数值频散误差判定标准来求解有限差分系数.通过上述两种方法,分别利用均匀各向同性介质和复杂构造模型进行了数值正演模拟和数值频散分析,并与传统泰勒展开算法、最小二乘算法进行比较,验证了线性化方法和模拟退火方法都能有效压制数值频散,并比较了各个算法的特点.

英文摘要:

Numerical simulation of the elastic wave equation with staggered-grid finite-difference algorithms is widely used to synthesize seismograms theoretically,and is also the basis of the reverse time migration.With some stability conditions,grid dispersion often appears because of the discretization of the time and the spatial derivatives in the wave equation.How to suppress the grid dispersion is therefore a key problem for finite-difference approaches.Different methods have been proposed to address this issue.The most commonly used methods are the high order Taylor expansion(TE)methods.In this paper,we extend the linear method for solving the acoustic wave equation to the staggered grid finite difference method for solving the elastic wave equation.We also apply the maximum-minimum criterion to measure the dispersion error when performing simulated annealing(SA)algorithm.Dispersion analysis and numerical simulation demonstrate that a linear method without iteration is nearly equal to the SA method and the least squares(LS)method in the space domain,and is better than the TE methods.For the finite difference coefficients obtained by the two methods,using homogeneousisotropic and complex structural model,we performed a numerical forward modeling and numerical dispersion analysis firstly,then compared it with the traditional Taylor expansion(TE)method and least squares(LS)method.Dispersion analysis and numerical simulation demonstrate the following conclusions:(1)With the increase of the length of the operator,various methods are able to maintain the dispersion relation in a larger wave number range.(2)The coefficients obtained by the TE method covers the minimal wave number range,coefficients from SA and LS method cover the maximal wave number range,the wave number range of linearization method is much larger than that of TE method,and is very close to that of the optimization method.(3)Although the wave number range of the linearization method is slightly less than the optimization

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地球物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国地球物理学会 中国科学院地质与地球物理研究所
  • 主编:刘光鼎
  • 地址:北京9825信箱
  • 邮编:100029
  • 邮箱:actageop@mail.igcas.ac.cn
  • 电话:010-82998105
  • 国际标准刊号:ISSN:0001-5733
  • 国内统一刊号:ISSN:11-2074/P
  • 邮发代号:2-571
  • 获奖情况:
  • 首届国家期刊奖,第二届国家期刊奖,中国期刊方阵“双高”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国地质文献预评数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),美国石油文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:31618