位置:成果数据库 > 期刊 > 期刊详情页
基于隐马尔可夫模型和免疫粒子群优化的多序列比对算法
  • ISSN号:1000-1239
  • 期刊名称:计算机研究与发展
  • 时间:0
  • 页码:1330-1336
  • 语言:中文
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林大学计算机科学与技术学院,长春130012, [2]吉林大学国家教育部符号计算与知识工程重点实验室,长春130012
  • 相关基金:国家自然科学基金重点项目(60433020);高等学校博士学科点专项科研基金项目(20030183060);吉林省科技发展计划国际合作基金项目(20050705-2)
  • 相关项目:生物信息学中的相关组合理论和算法研究
中文摘要:

序列的多重比对是生物序列分析研究中的一个重要内容.基于免疫系统的疫苗接种和受体编辑模型,结合粒子群优化方法提出了一种免疫粒子群优化算法,将该算法用于隐马尔可夫模型的学习过程,进而构建了一种基于隐马尔可夫模型和免疫粒子群优化的多序列比对算法,从BAliBASE比对数据库中选取了一些比对例子进行了模拟计算,并与Baum-Welch算法进行了比较.结果表明,所提出的方法不仅提高了比对的准确程度,而且缩减了比对所花费的时间。

英文摘要:

Multiple sequence alignment (MSA) is a fundamental and challenging problem in the analysis of biologic sequences. In this paper, an immune particle swarm optimization (IPSO) is presented, which is based on the models of the vaccination and the receptor editing in immune systems. The proposed algorithm is used to train hidden Markov models (HMM). Furthermore, an integration algorithm based on the HMM and IPSO for the MSA is constructed. The approach is examined by using a set of standard instances taken from the benchmark alignment database, BAliBASE. Numerical simulation results are compared with those obtained by using the Baum-Welch training algorithm. The result of the comparisons show that the proposed algorithm not only improves the alignment abilities, but also reduces the time cost.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349