位置:成果数据库 > 期刊 > 期刊详情页
一种基于多元社交信任的协同过滤推荐算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖州师范学院信息工程学院,浙江湖州313000, [2]浙江财经大学信息管理与工程学院,杭州310018
  • 相关基金:国家自然科学基金项目(61402336,61370173,61403338); 国家教育部科学基金项目(14YJCZH152); 浙江省自然科学基金项目(LY15F020018); 浙江省科技计划项目(2013C31138,2015C33247)
中文摘要:

协同过滤推荐是当前最成功的个性化推荐技术之一,但是传统的协同过滤推荐算法普遍存在推荐性能低和抗攻击能力弱的问题.针对以上问题,提出了一种基于多元化社交信任的协同过滤推荐算法CF-CRIS(collaborative filtering based on credibility,reliability,intimacy and self-orientation).1)借鉴社会心理学中的信任产生原理,提出基于多个信任要素(可信度、可靠度、亲密度、自我意识导向)的信任度计算方法;2)深入研究社交网络环境中各信任要素的识别、提取和量化方法;3)基于用户间的综合信任度选取可信邻居,完成对目标用户的个性化推荐.基于通用测试数据集的实验研究结果表明:该算法不但可以极大地提高推荐系统的精确度和召回率,而且表现出良好的抗攻击能力.

英文摘要:

Collaborative filtering(CF)is one of the most successful recommendation technologies in the personalized recommendation systems.It can recommend products or information for target user according to the preference information of similar users.However the traditional collaborative filtering algorithms have the disadvantages of low recommendation efficiency and weak capacity of attackresistance.In order to solve the above problems,a novel collaborative filtering algorithm based on social trusts is proposed.Firstly,referring to the trust generation principle in social psychology,a social trust computation method based on multiple trust elements is presented.In social networking environment,trust elements mainly include credibility,reliability,intimacy and self-orientation.Then specific methods of identifying,extraction and quantification of the trust elements are studied in depth.Finally,the trustworthy neighbors of target user are selected in accordance with the social trust,so as to make trust-based collaborative recommendation.Using the FilmTrust and Epinions as test data sets,the performance of the novel algorithm is compared with that of the traditional CF and the-state-of-art methods,as well as the CF based on single trust element.Experimental results show that compared with the other methods,the proposed algorithm not only improves the recommendation precision and recall,but also has powerful attack-resistance capacity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349