使用简单的方法将葡萄糖氧化酶(GOD)固定在介孔碳(Mesoporous Carbon)修饰的玻碳电极(GCE)表面.循环伏安测试表明:修饰电极上的GOD在0.1mol/L磷酸缓冲溶液(PBS)(pH=7.1)中发生了准可逆的氧化还原反应,其克式量电位为-0.4294 V,并且该电化学反应包含有两电子两质子的传递.在氮气饱和的情况下,以羧基二茂铁作为电子传递中介体,GOD能将葡萄糖彻底催化氧化,可见介孔碳修饰电极上的GOD保持了其生物学活性.
Glucose oxidase (GOD) is immobilized on glassy carbon electrode mesoporous carbon by simple method. Cyclic voltammetric results indicated that on GOD of the modified electrode a quasi-reversible redox reaction took place(GCE) surface modified at a formal potential of -0.4294 V in 0.1 mol/L phosphate buffer solution (PBS) ( pH 7.1 ). The electrochemical reaction consisted of a two-electron transfer coupled with a twoproton transfer. The GOD can completely catalyze oxidation of glucose via electron transfer intermedia of ferrocene monocarboxylic acid (FMCA) in saturated solutions with N2. The bioactivity of GOD on the modified electrode with mesoporous carbon was obviously unattacked.