由石根华提出的非连续变形分析(DDA)方法理论严密且计算较为高效,在模拟块体滑移、转动和张开等大变形、大位移问题方面具备独特优势,因而在岩土工程领域得到了广泛运用。然而DDA方法在提出初期不可避免地存在一些精度问题,对此石根华及国内外学者就问题产生原因和改进方法开展了大量研究工作。基于部分相关成果的研究学习,对改进原始DDA计算精度的各类方法进行归纳探讨,主要包括:(1)DDA块体内部应力位移场的精度控制;(2)块体接触问题处理方法的改进;(3)人为参数的合理选取;(4)能量耗散机制的考虑;(5)人工边界的改进等方面。对以上方法的改进效果和计算效率进行了简要分析和讨论,在此基础上对DDA的研究热点和发展趋势进行了概述,为该方法的进一步发展和完善提供思路。
The rigorous and efficient method of discontinuous deformation analysis (DDA) by Shi has been widely used in geotechnical engineering due to its advantages in calculating discontinuous deformation and large displacement including sliding, rotating and opening. However, some precision problems inevitably occur in the early stage, and follows mountains of work done by Shi and many other scholars in order to explain and solve these precision problems. In this paper, the research findings of the scholars in the world are summarized, and the effectiveness and efficiency of the improved methods are discussed mainly in the following five aspects: (1) Precision control of stress-field inside the DDA blocks; (2) Improvement of contact handling method among blocks; (3) Reasonable selection of artificial parameters; (4) Consideration of energy dissipation; (5) Modification of artificial boundary. Advanced research hotspots and trends are also discussed beyond the above work. Authors hope that this paper can bring some ideas for further development and improvement for the DDA method.