位置:成果数据库 > 期刊 > 期刊详情页
图像分类中基于核映射的光谱匹配度量方法
  • ISSN号:1001-1595
  • 期刊名称:《测绘学报》
  • 时间:0
  • 分类:TP75[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国科学院遥感应用研究所,北京100101, [2]浙江工业大学计算机科学与技术学院/软件学院,浙江杭州310023, [3]中国科学院研究生院,北京100049
  • 相关基金:国家自然科学基金(40971228;40871203;60873033);浙江省自然科学基金杰出青年团队项目(R1090569)
中文摘要:

针对多光谱遥感数据特点利用SSV匹配技术改进高斯核函数得到新的KSSV函数,然后在由KSSV核函数映射得到的高维空间中利用SAM匹配技术代替基于欧氏距离的相似性度量。如此可以充分挖掘多光谱影像中的波谱特征信息并有效利用,提高模式识别方法应用的有效性。将此方法分别应用于非监督分类(k均值)与监督分类(最小距离、SVM)的试验表明,改进度量的分类方法可显著提高地类间的可区分度并有效降低类内的不一致性,更有效针对多光谱遥感影像中的地物类型,获得较好的精度改进。 更多还原

英文摘要:

Based on the characteristic of multispectral data,a new function called KSSV is designed in modifying the Gaussian kernel mapping by SSV matching technology.With this function,the feature space of multispectral images could be mapped to high dimension space.Then in the high dimension space,the old similarity measure based on Euclidean distance was replaced by SAM method.In this way,the characteristic information in multispectral images can be exploited adequately and used in many remote sensing applications effectively.At last,the method is applied to unsupervised(k-means clustering) and supervised(minimum distance,SVM) classification experiments.The results show that the classification method with KSSV measure can significantly increase the accuracy of distinguishing between different land types and reduce inconsistency in one category.So the improved method can be more effective in the classification of multi-spectral remote sensing images and achieve better accuracy

同期刊论文项目
同项目期刊论文
期刊信息
  • 《测绘学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国测绘地理信息学会
  • 主编:杨元喜
  • 地址:北京市西城区三里河路50号
  • 邮编:100045
  • 邮箱:chxb@periodicals.net.cn
  • 电话:010-68531192
  • 国际标准刊号:ISSN:1001-1595
  • 国内统一刊号:ISSN:11-2089/P
  • 邮发代号:2-224
  • 获奖情况:
  • 中国科学技术协会精品科技期刊工程项目资助期刊(2...,中国国际影响力优秀学术期刊(2012年),第四届中国百种杰出学术期刊(2005年),科技部“中国精品科技期刊”(2008年、2011年、201...,中国科协优秀期刊,中国科协年度期刊内容和编校质量良好的13种期刊之...,中国测绘学会第一、第二届“全国优秀测绘期刊奖”...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:18477