多尺度分割是高分辨率遥感信息计算的重要基础,是高分辨率遥感影像图谱认知中“图”提取的关键技术。当前提出的多尺度分割方法普遍存在着占用内存大,耗费计算资源、计算时间长的缺点,并且这些问题随着遥感数据量的增大、算法的改进等进一步加剧。针对这种情况,根据当前集群计算技术的发展,以均值漂移的多尺度分割方法为例,实现了一种基于集群计算环境的多尺度分割算法,集中解决任务分配和结果回收以及数据并行的方式,统计了算法所消耗的时间,对其的效率进行了分析,通过实验说明了集群化对提高多尺度分割效率的有效性。
Multi_scales segmentation is important basis for high resolution RS information computation and key technologies for graphics information extraction.The existed multi_scales segmentation algorithms are usually memory cost,computation-intensive. What's more,these problems will become serious as the data accumulating and algorithms improving.To solve these problems,a parallel algorithm for mean shift multi_scales segmentation based on cluster is proposed and implemented,statistics the processing time ,then analyzes and proves the effectiveness of the algorithm.