位置:成果数据库 > 期刊 > 期刊详情页
基于提升小波变换和BP神经网络的图像哈希算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖南大学计算机与通信学院,长沙410082, [2]湖南大学软件学院,长沙410082
  • 相关基金:国家自然科学基金资助项目(60702065); 湘潭市科技计划重点项目资助课题(ZJ20071008)
中文摘要:

针对数字图像作为一种常用的数字多媒体信息,对其真实性和完整性的认证显得尤其重要,提出了一种基于提升小波变化和BP神经网络的图像哈希算法。首先利用图像像素矩阵和构造的函数来训练BP神经网络;再将图像进行提升小波变换,利用低频分量组成矩阵;最后利用已经训练好的BP神经网络来产生哈希序列。实验结果表明,本算法不仅可以抵抗内容保持的修改操作,而且能够很好地区分恶意攻击,有一定的鲁棒性和脆弱性。该技术在图像认证、版权保护、安全和基于内容的图像检索等方面有应用价值。

英文摘要:

As a useful digital multimedia information,authenticating the authenticity and the integrity of digital image is especially important. This paper presented an image hashing algorithm based on lifting wavelet transform and BP neural network. Firstly,used the image pixel matrix and the constructed function to train the BP neural network,and then the low-frequency components obtained by the lifting wavelet transform composed the matrix. At last,generated the image hash sequence by the well-trained BP neural network. The experimental results show that the proposed scheme not only can resist the content-preserving modifications,but also it is sensitive to the image of malicious tampering,so it is robust and fragile. Therefore,the method could be used to image authentication,copyright protection,image security and content-based image retrieval and so on.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049