位置:成果数据库 > 期刊 > 期刊详情页
基于不确定性PPI网络的最大稠密子图挖掘
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北工业大学计算机学院计算机软件与理论系,西安710072
  • 相关基金:国家自然科学基金资助项目(60703105); 西北工业大学基础研究基金资助项目(JC201042)
中文摘要:

研究表明使用PPI数据进行蛋白质功能预测是很有意义的。然而,从生物学实验得到的PPI数据一般是含有噪声的、不完全的和不精确的,这使得将PPI网络作为不确定图来处理变得更加合理。提出了一种基于深度优先搜索策略和点扩展的挖掘算法,它可以有效地从不确定的PPI网络中挖掘最大稠密子图。该算法使用了几种高效的剪枝技术来提高挖掘的时间效率。在酵母菌PPI数据上的实验结果表明该算法在精度和效率上都有很好的表现。

英文摘要:

Several studies have shown that the prediction of protein function using PPI data is promising.However,the PPI data generated from experiments are noisy,incomplete and inaccurate,which promotes to represent PPI dataset as an uncertain graph.This paper proposed a novel algorithm to mine maximal dense subgraphs efficiently in uncertain PPI network.It adopted several techniques to achieve efficient mining.An extensive experimental evaluation on yeast PPI network demonstrates that the approach has good performance in terms of precision and efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049