位置:成果数据库 > 期刊 > 期刊详情页
基于人工免疫网络的k-平均聚类算法的研究
  • ISSN号:0476-0301
  • 期刊名称:《北京师范大学学报:自然科学版》
  • 时间:0
  • 分类:O212.4[理学—概率论与数理统计;理学—数学] TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京师范大学信息科学与技术学院,北京100875
  • 相关基金:国家自然科学基金资助项目(10001006,60273015)
中文摘要:

以人工免疫网络理论结合k-平均算法,尝试了一种聚类分析的新的解决方案.对k-平均算法中每一次迭代求平均值来确定聚类中心的方式进行改进,采用人工免疫网络中克隆选择和变异机制对聚类中心进行操作,选取最优抗体作为下一次迭代的聚类中心,克服了k-平均算法中对孤立点敏感的缺点,从而大大减少了迭代次数.通过对4组标准数据的实验,结果表明,该算法具有很好的自适应性,收敛速度快,提高了聚类性能.

英文摘要:

A novel solution for k-means cluster based on artificial immune net is presented. To achieve cluster centers in each iteration of k-means, we used clone selection and variation in artificial immune net, instead of taking mean value, as cluster center. In this new approach, best antibodies were selected as cluster centers of next iteration, so that the sensitivity for isolated point consisting of k-means algorithm was overcame, therefore the iteration process is reduced. This algorithm was tested on four groups of standard data sets, and was found to have good self-adaption and performance.

同期刊论文项目
期刊论文 13 会议论文 3 著作 10
同项目期刊论文
期刊信息
  • 《北京师范大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:北京师范大学
  • 主编:刘文彪
  • 地址:北京新外大街19号
  • 邮编:100875
  • 邮箱:JBNUNS@bnu.EDU.CN
  • 电话:
  • 国际标准刊号:ISSN:0476-0301
  • 国内统一刊号:ISSN:11-1991/N
  • 邮发代号:82-406
  • 获奖情况:
  • 1997年全国第二届科技期刊评比一等奖,1999年教育部优秀科技期刊二等奖,1999年首届国家期刊奖,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,英国科学文摘数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10672