位置:成果数据库 > 期刊 > 期刊详情页
混合卡尔曼滤波在外辐射源雷达目标跟踪中的应用
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TN957[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]西安电子科技大学雷达信号处理国家重点实验室,西安710071
  • 相关基金:国家自然科学基金(61372136)资助课题
中文摘要:

为了提高无迹卡尔曼滤波(UKF)中误差协方差矩阵的估计精度,该文结合外辐射源雷达目标跟踪模型,提出了一种混合卡尔曼滤波(MKF)算法,首先通过 UKF 对目标状态进行一次后验估计,然后重新建立一个观测方程,把 UKF 滤波输出的状态估计值转化为新建观测方程的量测值,并通过线性卡尔曼滤波对状态进行二次最优估计。实验结果表明,与扩展卡尔曼滤波(EKF), UKF 相比,MKF 明显提高了外辐射源雷达目标跟踪的精度。

英文摘要:

To improve the estimation accuracy of the error covariance matrix in Unscented Kalman Filter (UKF). With the passive radar target tracking model, a novel Mixed Kalman Filter (MKF) is proposed, Firstly, the UKF is used to conduct a posteriori estimate for target state, and then re-establish a measurement equation, the posteriori estimated value of state by UKF is transformed into a measured value of the new measurement equation, and through linear Kalman Filter the state is best estimated secondly, improving the precision of target state estimation. Experimental results indicate that MKF algorithm significantly improves the performance of passive radar target tracking, compared with the Extended Kalman Filter (EKF) and UKF.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591