位置:成果数据库 > 期刊 > 期刊详情页
一种移动机器人SLAM中的多假设数据关联方法
  • ISSN号:1672-7207
  • 期刊名称:中南大学学报(自然科学版)
  • 时间:0
  • 页码:522-527
  • 分类:TP242.6[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410083
  • 相关基金:国家自然科学基金重大专项(90820302);国家自然科学基金面上(青年)项目(60805027); 中南大学自由探索计划基金资助项目(2010年)
  • 相关项目:高速公路车辆智能驾驶中的关键科学问题研究
中文摘要:

针对移动机器人同时定位与建图(SLAM)中的局部数据关联问题,提出一种基于粒子滤波的多假设数据关联方法。该方法将数据关联问题转换成离散优化问题,利用多个粒子来维持多种数据关联假设,通过计算关联代价来获得粒子权重,用基本剪枝技术在粒子重采样过程中滤除错误的数据关联假设。研究结果表明:该方法弥补了经典的数据关联方法中关联假设一旦确定就不能修改的不足;与ICNN和JCBB数据关联方法相比,该方法能获得更正确的数据关联结果和更高的定位精度。

英文摘要:

According to the local data association problem in mobile robot SLAM process,a new multiple hypotheses data association method based on the particle filter was presented.In the method,the data association problem was transformed as the discrete optimization,and multiple particles were used to maintain the multiple data association hypotheses and every particle's weight was calculated by association cost.During the resample,the wrong hypotheses were discarded through basic branch and bound approach.The results show that the method resolves the problem where the classic method cannot modify the previous association hypothesis.By experimental results analysis and comparison,the new method can reach more correct data association results and higher location precision than the classic ICNN and JCBB method.

同期刊论文项目
期刊论文 52 会议论文 1 获奖 1
同项目期刊论文
期刊信息
  • 《中南大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:中南大学
  • 主编:黄伯云
  • 地址:湖南长沙中南大学校本部
  • 邮编:410083
  • 邮箱:zngdxb@csu.edu.cn
  • 电话:0731-88879765
  • 国际标准刊号:ISSN:1672-7207
  • 国内统一刊号:ISSN:43-1426/N
  • 邮发代号:42-19
  • 获奖情况:
  • 首届全国优秀科技期刊评比一等奖,第二届全国优秀科技期刊评比一等奖,首届中国有色金属工业优秀科技期刊评比一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20874