位置:成果数据库 > 期刊 > 期刊详情页
融合时间衰减与偏好波动的协同偏好获取方法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]运城学院公共计算机教学部,山西运城044000, [2]运城学院应用数学系,山西运城044000
  • 相关基金:国家自然科学基金资助项目(11241005); 山西省教育厅重点教学研究改革项目(J2014104)
中文摘要:

针对现有的推荐系统多采用近邻用户的偏好行为来预测当前用户的偏好,而不考虑用户的偏好会随着时间的变化而改变,影响了推荐准确率的问题,提出了一种基于时间衰减与偏好波动的协同偏好获取方法。首先,基于时间因素、用户历史偏好等获取偏好衰减增量与衰减速度,并据此生成衰减函数,使用衰减函数对用户历史行为数据进行衰减修正;其次,基于用户的历史偏好分布获取其偏好波动幅度;最后,将衰减函数与偏好波动幅度分别加入到最近邻获取与偏好获取流程,协同为用户生成推荐列表。在大规模真实数据集上的实验结果表明,所提出的方法与基于属性评分分布的协同过滤(RDCF)与最优Top-N的协同过滤(OTCF)相比,平均绝对误差(MAE)值分别降低了近6.42%和7.73%。实验结果表明所提方法能够提高推荐准确度,提升推荐质量。

英文摘要:

The existing recommender systems often use the nearest neighbors' preference behavior to predict current users' preference, and their recommendation accuracy are influenced by the lack of consideration that users' preference would change over time. To solve this problem, a cooperative preference prediction method based on time attenuation and preference fluctuation was proposed. First, attenuation increment and attenuation speed were obtained based on time and historical preference, and the attenuation function was generated by attenuation increment and attenuation speed to modify users' historical preference behavior. Then the distribution of historical preference was used to compute the preference fluctuation range. Finally, the recommender list was generated for user by applying the attenuation function and preference fluctuation range into the acquisition of nearest neighbors and the preference acquisition process. The experimental results on real data set show that, compared with the Collaborative Filtering based on Rating Distribution( RDCF) and Optimizing Top-N Collaborative Filtering( OTCF), the average Mean Absolute Error( MAE) of the proposed method is decreased by about 6. 42% and 7. 73%respectively. It also shows that the proposed method can achieve higher recommendation accuracy and better recommendation quality.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679