基于有效应力的概念,在Biot理论的基础上给出了考虑液体和颗粒可压缩性的多孔介质水力耦合理论的控制方程--流体的连续性方程,动量平衡方程,材料的本构方程和Darcy定律,并且与传统的Biot固结方程进行对比,阐明了Biot系数的意义和形式。利用Bear等提出的等效连续理论把多孔介质理论推广到裂隙岩体介质中去,采用了与变形相关的渗透系数张量,建立了孔隙率和体积应变以及渗透系数和体积应变的函数关系,利用有限元法求解具有强烈非线性特点的耦合方程,并且对岩体隧洞开挖过程中的流固耦合机制进行了数值仿真分析。
This paper presents the behavior of saturated porous media based on the effective stress concept and Biot's consolidation theory, the governing equations derived from the conservation of fluid mass, the equations of equilibrium, constitutive behavior of materials and Darcy's law are compared with the traditional Biot's consolidation equations. The concept of Blot's coefficients is demonstrated herein. The porous media governing equations are extended to the fractured porous media with the equivalent continuum theory presented by Bear. The FEM is used for resolving strong nonlinear coupling equations and the coupled Hydro-mechanical processes during tunnel excavation are analyzed.