位置:成果数据库 > 期刊 > 期刊详情页
面向非完备决策表的正向近似特征选择加速算法
  • ISSN号:0254-4164
  • 期刊名称:计算机学报
  • 时间:2011.3.1
  • 页码:435-442
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]计算智能与中文信息处理教育部重点实验室,太原030006, [2]山西大学计算机与信息技术学院,太原030006
  • 相关基金:本课题得到国家自然科学基金(71031006,60903110,60773133,70971080)、国家“九七三”重大基础研究发展规划项目基金(2007CB311002)和山西省自然科学基金(2008011038,2009021017-1)资助.
  • 相关项目:高维复杂数据分析理论及其在投资决策中的应用
中文摘要:

正向近似是刻画目标概念组成结构的一种有效方法.文中针对非完备决策表现有特征选择算法计算耗时过大的缺陷,提出了一种基于正向近似的通用特征选择加速算法.该算法不仅对候选属性具有保序性,而且通过在特征选择过程中减少样本数据的规模来降低计算耗时,加速特征选择过程.实验结果进一步验证了加速算法的有效性和高效性.特别指出的是,随着属性的增多和数据量的增大,加速算法的性能通常会更好,可有效应用于海量数据的特征选择.

英文摘要:

Positive approximation is an effective approach to characterizing the structure of a target concept in information systems. To overcome the limitation of time-consuming of all existing feature selection algorithms in incomplete decision tables. This paper provides a general accelerated algorithm based on the positive approximation. This modified algorithm both possesses the rank preservation of attributes and reduces the time consumption through reducing the scale of data, which effectively accelerates the process of feature selection in incomplete decision tables. Experimental analyses verify the validity and efficiency of the accelerated algorithm. It is deserved to point out that the performance of these modified algorithms are getting better in time reduction with the data set becoming larger.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433