根据几何代数在地理空间对象建模和多维数据分析应用的特点,研究了共形几何代数交/并(meet/join)算子的含义、构建和应用.利用几何代数多维统一、高维计算适应的优势,设计了基于几何代数meet算子和有向半空间划分理论的时空宗地meet算法.从三维地籍和时空数据建模出发,在共形几何代数和时空代数范畴中,给出了三维、四维时空宗地的定义和表达.同时,以宗地数据的拓扑计算为例,将该算法运用于三维时空宗地拓扑计算场景——历史回溯中,取得了良好的效果.该算法的理念同样适用于四维时空宗地的历史回溯meet求解.
Geometric algebra has advantages in solving problems of geometric object modeling and multidimensional data analysis. This paper conducts studies on the meaning, construction and application of its two operators: meet and join. By exploiting their merits of multidimensional consistency and high dimension adaptivity, we propose a spatio-temporal parcel meet algorithm. We also give definitions and representations of 3D and 4D spatio-temporal parcel within the domain of conformal geometric algebra and spatio-temporal algebra. The algorithm is successfully applied to conduct the topology computation of three dimension spatio-temporal parcels and achieves satisfactory re- suits.. Experiment show that our approach provides a novel and effective way for the representation and topology computation of three dimensional spatio-temporal parcel and hopefully a new resolution for four dimensional spatio- temporal parcels.