位置:成果数据库 > 期刊 > 期刊详情页
基于压缩感知的鲁棒性人脸表情识别
  • ISSN号:1003-3254
  • 期刊名称:计算机系统应用
  • 时间:2015.2.1
  • 页码:159-162
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江理工大学机械自动控制学院,杭州310018, [2]台州学院图像处理与模式识别研究所,临海317000
  • 相关基金:国家自然科学基金(61272261,61203257)
  • 相关项目:基于压缩感知的鲁棒性语音情感识别研究
中文摘要:

为了有效提高噪声背景下的人脸表情识别性能,提出一种基于压缩感知的鲁棒性人脸表情识别方法.先通过对腐蚀的测试样本表情图像进行稀疏表示,再利用压缩感知理论寻求其最稀疏的解,然后采用求得的最稀疏解信息实现人脸表情的分类.在标准的Cohn-Kanade表情数据库的实验测试结果表明,该方法取得的人脸表情识别性能优于最近邻法、支持向量机以及最近邻子空间法.可见,该方法用于人脸表情识别,识别效果较好,鲁棒性较高.

英文摘要:

In order to effectively improve the performance of facial expression recognition under the noisy background, a method of robust facial expression recognition based on compressed sensing is proposed. Firstly, the sparse representation of corrupted expression images of the identified test sample is sought, then the compressed sensing theory is used to solve its sparsest solution. Finally, according to the sparsest solution, facial expression classification is performed. Experimental results on benchmarking Cohn-Kanade database show that facial expression performance obtained by this method is better than the nearest neighbor (NN), support vector machine (SVM) and the nearest subspace (NS). Therefore, the proposed method shows both good recognition performance and high robustness on facial expression recognition tasks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机系统应用》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所
  • 主编:苏振泽
  • 地址:北京8718信箱
  • 邮编:100190
  • 邮箱:csa@iscas.ac.cn
  • 电话:010-62661041
  • 国际标准刊号:ISSN:1003-3254
  • 国内统一刊号:ISSN:11-2854/TP
  • 邮发代号:82-558
  • 获奖情况:
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2000版)
  • 被引量:15201