位置:成果数据库 > 期刊 > 期刊详情页
电子鼻融合BP神经网络预测玉米赤霉烯酮和黄曲霉毒素B1含量模型研究
  • ISSN号:1003-0174
  • 期刊名称:《中国粮油学报》
  • 时间:0
  • 分类:TP212[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:河南科技大学食品与生物工程学院,洛阳471023
  • 相关基金:国家自然科学基金(31171685),河南省教育厅自然科学研究项目(13A550269)
中文摘要:

为探究玉米赤霉烯酮和黄曲霉毒素B1的无损快速定量测定方法,用电子鼻对7级不同霉变程度玉米样品进行检测,并用理化分析方法分别测定霉变玉米中的玉米赤霉烯酮与黄曲霉毒素B1含量;在提取电子鼻响应信号的积分值作为特征参量的前提下,采用BP神经网络建立不同霉变程度下玉米样品中的玉米赤霉烯酮与黄曲霉毒素B1含量的预测模型。同时,为了获得较为可靠的BP神经网络预测模型,在神经网络结构不变的条件下,对比分析了不同训练集、测试集构建的预测模型。结果发现在各预测模型的70组测试样本中,相对误差控制在5%以内的样本数量都在60个以上,最大相对误差控制在15%以内,从而证明了BP神经网络预测模型的有效性、可靠性。该研究为实施玉米霉变毒素的快速无损检测提供了一种途径。

英文摘要:

In order to explore the fast, quantitative and nondestructive test method for zearalenone and aflatoxin B1 , corn samples with 7 different levels of mold were tested by electronic nose ( e - nose). At the same time the content of zearalenone and aflatoxin B1 were tested using biochemical analysis method. The integral value of the e - nose response signal was extracted and acted as the characteristic parameter; BP neural network was adopted to establish prediction model for the content of zearalenone and ailatoxin B1 of different degree of mildew corn samples. In addition, in order to obtain a more reliable BP neural network prediction model, on the premise that the structure of the neural network was unchanged, the prediction model based on different training sets and test sets was compared and analyzed. The results showed that in each prediction model of 70 groups of test samples, the relative error control within 5% of the sample quantity was over 60, and maximum relative error was controlled within 15%, which proved the validity and reliability of the BP neural network prediction model. The study provided a method of fast nondestructive testing corn mycotoxin.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国粮油学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国粮油学会
  • 主编:于衍霞
  • 地址:北京市西城区百万庄大街11号
  • 邮编:100037
  • 邮箱:lyxbao@126.com
  • 电话:010-68357510
  • 国际标准刊号:ISSN:1003-0174
  • 国内统一刊号:ISSN:11-2864/TS
  • 邮发代号:80-720
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:22098