位置:成果数据库 > 期刊 > 期刊详情页
基于模糊聚类回归的人脸特征点定位研究
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:空军工程大学航空航天工程学院,西安710038
  • 相关基金:国家自然科学基金“面部运动视觉认知表达及分析方法研究”(61379104).
中文摘要:

传统基于回归的人脸特征点定位算法存在忽略人脸局部结构信息、姿态偏转较大时定位精度差等问题。为此,提出一种基于模糊聚类回归的定位算法。利用人脸特征点之间的局部结构信息对人脸训练集进行聚类,并根据阈值判决结果适度扩充训练样本。分别训练所有子训练集的回归结构,在测试过程中加入多次形状约束以自动调整每次聚类的结果和回归结构的选择,由此提高人脸特征点定位的精度。在300-W数据库上的实验结果表明,与形状回归算法和鲁棒姿势回归算法相比,该算法明显提高了姿态偏转较大情况下的定位精度。

英文摘要:

There are such problems in traditional facial feature point localization algorithm based on regression that the local structure information is ignored and the localization accuracy is poor when the attitude deflection is large, so this paper proposes a localization algorithm based on fuzzy clustering regression. The face training set is clustered with the local structure information of the face feature points, and the training samples are extended according to the threshold decision. The regression structures for all the sub-training sets are trained separately, and the shape constraints are added for several times in the test process to automatically adjust the results of each clustering and the selection of the regression structure,which improves the location accuracy of the facial feature point localization. Experimental results on 300-W database show that compared with ESR and RCPR, the proposed algorithm can effectively improve the positioning accuracy in the condition of large attitude deflection.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139