对于任一自然数b,假设方程bμ(μ-2)-(μ-1)2(μ-3)=0的第二大特征根分别为lG(b);假设方程bμ(μ-2)-(μ-1)2(μ-3)-(μ-1)(μ-2)=0的第二大特征根分别为lT(b).本文首先证明了存在图序列{Gn,b}和{Tn,b},其第三大拉普拉斯特征值的极限点分别为lG(b)和lT(b),(b=0,1,…).其次,本文证明了lG(b),lT(b)及2是第三大拉普拉斯特征值的所有小于等于2极限点。
For a different parameter b,let lG(b) denote the second largest root of bμ(μ-2)-(μ-1)2(μ-3) =0 (b=0,1,...) and lT(b) denote the second largest root of bμ(μ-2)-(μ-1)2(μ-3)-(μ-1)(μ-2) =0 (b=0,1,...).Firstly,we will prove that there exist sequences of graphs {Gn,b}(b=0,1,...) and {T,n,b}(b=0,1,...) such that their limit points of the third largest Laplacian eigenvalues are lG(b) and lT(b),respectively.Secondly,we will prove that lG(b),lT(b) and 2 are all of the limit points of the third largest Laplacian eigenvalues which are no more than 2.