采用道次小压下量的工艺对高铌双态TiAl锻造合金进行精确控制的冷轧实验。结果表明:冷轧后整个试样变形均匀,总变形量在没有中间退火的情况下最大可超过20%。合金变形后的组织仍然为双态组织,γ组织沿轧制方向拉伸变长,片层组织也由原来的无序分布变为与轧向呈一定角度分布。退火实验表明,不同的变形量、退火温度和退火时间对冷轧高铌钛铝合金的力学性能和显微组织均有明显的影响,因而不同的压下量,其中间退火工艺是不同的。
High-Nb dual phase wrought TiAl alloys were cold-rolled under accurate control by small-pass reduction process. Results show that the deformation of the whole sample is uniform after cold rolling, and the maximum total deformation amount would be more than 20% in the case of no intermediate annealing. The microstructure of the deformed alloy still kept a dual phase structure; 7 grains were elongated along rolling direction; the residual lamellar changed from the initial disordered distribution to the distribution of keeping a definite angle to rolling direction. The annealing tests reveal that different reductions, annealing temperatures and annealing time have obvious effect on the mechanical properties and structure of the cold rolled high-Nb TiAl alloy; therefore the intermediate annealing process corresponding to different reductions are also different.