广义Kuramoto-Sivashinsky方程描述了火焰燃烧的位置波动,一种流体沿着垂直壁的运动以及—个均匀介质中的空间均匀振荡化学反应.通过应用改进的(G'/G)-展开式法,我们获得了广义Kuramoto-Sivashinsky方程新的双曲函数行波解,并且给出了各参数的限制条件.事实证明,改进的(G'/C)-展开式法对求解数学物理中的非线性偏微分方程是非常实用的.
The generalized Kuramoto-Sivashinsky equation which describes the fluctua- tions of the position of a flame front, the motion of a fluid going down a vertical wall, or a spatially uniform oscillating chemical reaction in a homogeneous medium, is discussed by the extended (G'/G)-expansion method. By using the extended (G'/G)-expansion method, new hyperbolic function traveling wave solutions of this equation are presented. The restrictions on the parameters are also identified. It is shown that the extended (Gt/G)-expansion method is a competent and influential tool in solving nonlinear partial differential equations in mathematical physics.