位置:成果数据库 > 期刊 > 期刊详情页
蜂群算法研究综述
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东华大学旭日工商管理学院,上海200051, [2]广西民族大学数学与计算机科学学院,南宁530006
  • 相关基金:国家自然科学基金资助项目(70971020)
中文摘要:

蜂群算法是一种模仿蜜蜂繁殖、采蜜等行为的新兴的群智能优化技术,近几年备受研究者关注。初步探讨了蜂群算法的理论基础,详细论述了基于蜜蜂繁殖行为和采蜜行为的两类蜂群算法的生物学机理及其最常见算法的应用研究情况,并分析比较了遗传算法、蚁群算法、粒子群算法和蜂群算法的优缺点、适用范围及性能。最后,总结了现有蜂群算法存在的问题,并指出其未来的研究方向。

英文摘要:

Bee colony algorithms are new swarm intelligence techniques inspired by the intelligent behaviors of real honey bees such as the reproductive behavior and the foraging behavior.More recently,researchers have become very interested in it and its related research.Therefore,this paper preliminary studied the theoretical basis of bee colony algorithms.According to the different bee behaviors,bee colony algorithms were mainly classified into two types,namely the reproductive behavior and the foraging behavior.Then discussed and illustrated the biological mechanism and the most popular algorithm of each type in detail,respectively.Moreover,analyzed and compared genetic algorithm,ant colony optimization,particle swarm optimization and bee colony algorithms in terms of advantages and disadvantages,application fields and performances.Finally,summarized the existing problems in current research on the bee colony algorithms and suggested some future research directions to address the problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049