相变材料由于相变过程中吸收或者释放大量能量且过程近似等温这一特性而有巨大的应用潜力,将相变材料蓄热装置应用于航天器是维持航天器内各个单元工作温度的一种有效方法.提出一种基于正二十烷的相变蓄热结构方案,分别填充泡沫铜与泡沫碳作为基体材料来强化相变材料的传热性能.通过对该模型进行数值仿真计算,得到相变蓄热装置温度、固液相界面位置随时间的变化等有效数据,分析泡沫相变蓄热材料在微重力条件下相变界面的演变过程.结果显示,得益于其较高的导热系数,泡沫复合相变材料可将热源热量有效分散到其他区域,减缓热源面温度上升速度,并且降低重力变化对传热的影响.所得数据结果为泡沫复合相变材料的工程应用提供了科学依据.
Phase Change Material (PCM) is particularly attractive due to its ability to provide high-energy storage density per unit mass in quasi-isothermal process. PCM Thermal Energy Stor- age (TES) device can effectively store thermal energy and maintain the temperature of electronic components in spacecraft. Two thermal energy storage devices filled with eicosane (C20) are present- ed. One is impregnated in carbon foams and the other is impregnated in copper foams. Numerical simulations of phase change process environment are performed by FLUENT software. The tem- perature distribution and solid-liquid phase interface changes are obtained. The results show that the temperature rising speed of heat source surface is reduced due to the high thermal conductive of Foam Composite Phase Change Material (FCPCM). FCPCM also could reduce the influence of gravity change on to thermal transfer. The results provide the scientific basis for the engineering application of FCPCM in microgravity.