位置:成果数据库 > 期刊 > 期刊详情页
Solution to Stochastic LQR Problem with Multiple Inputs
  • ISSN号:1009-6124
  • 期刊名称:《系统科学与复杂性学报:英文版》
  • 时间:0
  • 分类:N[自然科学总论]
  • 作者机构:[1]School of Control Science and Engineering, Shandong University, Jinan 250061, China., [2]School of Electrical Engineering and Computer Science, University of Newcastle, NSW 2308, Australia, [3]School of Automation, Guangdong University of Technology, Guangzhou 510006, China.
  • 相关基金:This research was supported by the National Natural Science Foundation of China under Grant Nos. 61120106011, 61573221, 61633014 and National Key Technology Support Program of China under Grant No. 2014BAF07B03.
中文摘要:

A 最新建议了分布式的动态州的评价算法基于一种 posteriori (地图) 技术是的最大值为力量广义、学习系统。系统模型包含线性变化时间的负担动力学和非线性的大小。这的主要贡献纸是把这个分布式的算法的表演和可行性与几存在作比较在文学的分布式的州的评价算法。模拟在各种各样的操作下面在 IEEE 39 公共汽车和 118 公共汽车系统上被测试条件。结果显示出那这散布了算法比分布式的伪稳定的状态更好表现不使用负担的评价算法动态模型。结果也证明这个分布式的方法的表演离很靠近旁边集中的状态评价方法。这的优点算法过去集中的方法躺着在里面它的低计算复杂性和低通讯负担。因此,分析支持效率和好处在应用程序散布了算法到大规模力量系统。

英文摘要:

A newly proposed distributed dynamic state estimation algorithm based on the maximum a posteriori (MAP) technique is generalised and studied for power systems. The system model involves linear time-varying load dynamics and nonlinear measurements. The main contribution of this paper is to compare the performance and feasibility of this distributed algorithm with several existing distributed state estimation algorithms in the literature. Simulations are tested on the IEEE 39-bus and 118-bus systems under various operating conditions. The results show that this distributed algorithm performs better than distributed quasi-steady state estimation algorithms which do not use the load dynamic model. The results also show that the performance of this distributed method is very close to that by the centralized state estimation method. The merits of this algorithm over the centralized method lie in its low computational complexity and low communication load. Hence, the analysis supports the efficiency and benefits of the distributed algorithm in applications to large-scale power systems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统科学与复杂性学报:英文版》
  • 主管单位:中国科学院
  • 主办单位:中国科学院系统科学研究所
  • 主编:
  • 地址:北京东黄城根北街16号
  • 邮编:100080
  • 邮箱:
  • 电话:010-62541831 62541834
  • 国际标准刊号:ISSN:1009-6124
  • 国内统一刊号:ISSN:11-4543/O1
  • 邮发代号:82-545
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:125