Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb3PO4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb3PO4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb3PO4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb3PO4 and worth in industrial application.
Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb_3PO_4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde〉 4-bromobenzaldehyde〉benzaldehyde〉acetophenone〉anisaldehyde〉butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb_3PO_4 and worth in industrial application.